CARGILL SALT DIVISION

7220 Central Ave.
Newark, CA 94560-4206
510/797-1820 1-800-321-1458
Fax: 510/790-8189

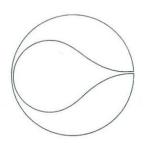
CALIFORNIA REGIONAL WATER
MAR 2 6 1996
QUALITY CONTROL BOARD

March 26, 1996

Ms. Loretta Barsamian
Executive Officer
California Regional Water Quality Control Board
2101 Webster Street, Suite 500
Oakland, CA 94612

ATTENTION: Lila Tang

Dear Ms. Barsamian:


Please find attached the self-monitoring report for the NPDES Permit No.CA0028690 for our Redwood City facility wet weather discharge of rainwater from our crystallizer beds.

Discharge of rainwater from the crystallizer beds occurred February 23 through February 29, 1996. Approximately 88 acre feet of water was discharged to First Slough in Redwood City. The field measurements showed a range of Baume readings from 2.8 to 3.5 and a pH range of 8.0 to 8.4. The laboratory measurement of TDS was 31,300 mg/l and laboratory measurement of pH was 8.43.

Slightly elevated levels of nickel were found during this sampling period. Nickel was found at a concentration of 0.011 mg/l exceeding the discharge limit of 0.0071 mg/l. It also should be noted that due to matrix interferences in the laboratory, the detection limit for silver was raised above the discharge limit. Silver was below the detection limit but it is not known whether it exceeded the discharge limit.

I apologize for the delay in submitting this report. As noted in the laboratory write-up, there was a mix up in the turnaround time at the lab which caused the delay in obtaining the results.

As always, please feel free to call with any questions.

Minor violetion of nickel limit.

No followup necessary at this time.

Corgill's investigated previouslyand

could not tind process source.

WT

49996

Ms. Loretta Barsamian March 26, 1996 Page 2

" I certify under penalty of law that this document and all attachments are prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who managed the system, or those persons directly responsible for gathering information, the information submitted is , to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations [40 CFR 122.22(d)]."

Sincerely,

Barbara N. Ransom

Environmental Manager

Bubnu To Ken

cc: U.S. Environmental Protection Agency

B. APPENDIX B. COMPLIANCE EVALUATION SUMMARY

b. COMPLIANCE EVALUATION SUMMARY

Effluent Limitations

1. The discharge of Waste No. 1 containing constituents in excess of following limits is prohibited.

Constituents	<u>Units</u>	Maximum	Results
Total Dissolved Solids	mg/1	32,000	2.8-3.5 Be (in field) 31,300 ppm (laboratory)
Biochemical Oxygen Demand Five day	mg/l	20	<10 mg/l
Arsenic	mg/1	0.020	<0.020 mg/l
Cadmium	mg/1	0.010	<0.005 mg/l
Chromium (VI) ^(a)	mg/1	0.011	0.005 mg/l
Copper	mg/l	0.020	0.010 mg/l
Lead	mg/l	0.0056	<0.005 mg/l
Mercury	mg/l	0.001	<0.00020 mg/l
Nickel	mg/l	0.0071	0.011 mg/l
Silver	mg/1	0.0023	<0.005(b) mg/l
Zinc	mg/l	0.058	<0.010 mg/l

⁽a) The Discharger may meet this limit as total chromium

Results

2.	Waste No. 1 shall not have a pH less than 6.5	Ranged between
	nor greater than 8.5	pH 8.0-8.4 (field)
	•	8.43 (lab)

3. The survival of test fishes of the species <u>Menidia beryllina</u> or silverside minnow is a 96 hour static bioassay of the discharge of Waste No. 1 shall be a median of 90 percent survival and a 90 percentile value of not less than 70 percent survival.

Results: The results indicate that there was 70% survival in the 100% effluent sample at the end of 96 hours.

According to our records, this is the fourth time that an acute toxicity test has been performed on effluent discharged from the Redwood City Crystallizer Pond. Of those four events, two have exhibited less than 90% survival and none have exhibited <70% survival. Therefore, according to the discharge permit, neither of the discharge limitations have been exceeded.


⁽b) Detection limit is higher than discharge limit

APPENDIX C.

MAP

CARGILL SALT

REDWOOD CITY

APENDIX D. LABORATORY DATA

APPENDIX D. LABORATORY DATA

Ms. Barbara Ransom Cargill Salt Company Environmental Affairs 7200 Central Avenue Newark, CA 94560-4206 25 March, 1996

Dear Barbara:

Enclosed, please find two (2) copies of the report entitled:

Report of Acute Biomonitoring Test: Rainwater Discharge from Crystallizers; Collected 23 February, 1996. Redwood City Facility.

This report contains the raw data from the bioassay and the complete contract laboratory chemical analyses reports.

I appologize for the extreme tardiness of this report. We just received the chemical results from Quanterra today. Apparently, they logged in the wrong turn-around-time. I have spoken with them and they assure me that this will not happen again. Once again, I'm sorry for the inconvenience that this has caused.

If you have any questions, or require additional information, please contact me at your earliest convenience.

Gary G. Wortham Laboratory Manager

REPORT OF ACUTE BIOMONITORING TEST

RAINWATER DISCHARGE FROM CRYSTALIZERS COLLECTED 23 FEBRUARY, 1996

REDWOOD CITY FACILITY

Prepared for

Cargill Salt Company 7220 Central Avenue Newark, CA 94560

Prepared by

S.R. Hansen & Associates 4085 Nelson Ave, Suite I Concord, Ca. 94520

•				
	,			
	·	•	·	

1. INTRODUCTION

Beginning in February, 1992, S.R. Hansen & Associates began conducting static acute toxicity tests for the Cargill Salt Company in Newark, California as part of the compliance monitoring mandated in the facility's NPDES permit. This report describes the procedures used and the results obtained for acute toxicity tests and chemical analyses performed on a sample of Rainwater Discharged from the Crystallizers at the Redwood City facility between 22 - 23 February, 1996.

2. MATERIALS AND METHODS

Sample Collection - A 24-hr. composite sample of Rainwater Discharge from the Crystallizers at the Redwood City facility was collected by Cargill Salt Company staff on 22-23 February, 1996. The sample was stored in a pre-cleaned 2.5 gallon cubitainer, packed in an ice chest, and maintained at 4°C for transport to the S.R. Hansen & Associates (SRH&A) laboratory via SRH&A courier on 23 February, 1996. Toxicity tests were initiated on 23 February, 1996.

Test Organisms - Acute bioassays were performed using *Menidia beryllina*. The *Menidia* were obtained from an outside supplier (Aquatic Indicators, St. Augustine, FL).

Toxicity Test Procedures - Menidia beryllina (11 days old) were obtained from Aquatic Indicators (St. Augustine, FL.) and were held in a five gallon aquarium prior to use in the tests. The animals were exposed to the effluent for a period of 96 hours under static, (renewal at 48 hours) conditions. The test was performed at a salinity of 31 ppt. One-liter beakers were used for the exposures, with a total volume of 500 ml of effluent sample added to each beaker. Arrowhead Spring Water (salinity adjusted to 31 ppt using artificial sea salts, Tropic Marin) was used as the control and diluent. Ten fish were placed into each container, and each exposure was run in duplicate. Temperature, dissolved oxygen, pH, electrical conductivity, salinity, and number of dead organisms were recorded daily in each exposure.

Chemical Test Procedures - Representative aliquots of the effluent were sent to Curtis & Tompkins, LTD (Berkeley, CA) and Quanterra Environmental Services (Sacramento, CA) for analyses. The sample that was to be analysed for metals was preserved with ultra-pure (Ultrex) nitric acid while the total dissolved solids and BOD samples remained unpreserved. Both samples were refrigerated to 4°C and shipped in a cooler with frozen blue ice to the contract labs via SRH&A and overnight couriers.

3. RESULTS

The results of the acute toxicity tests and chemical analyses performed on the 23 February, 1996 Rainwater Discharge from the Redwood City Crystallizers are presented in Tables 1 and 2, respectively and can be summarized as follows:

3.1 ACUTE BIOASSAY TEST

The results from the acute toxicity bioassay using *Menidia beryllina* as the test indicator species indicates that there was 70% survival in the 100% effluent sample after 96 hours (Table 3-1).

3.2 CHEMICAL ANALYSES

Chemical analyses of the effluent sample that was discharged from the crystallizer between 22 - 23 February, 1996 indicate that one (1) of the metals that were analyzed (i.e., nickel) was present in detectable concentrations (Table 3-2). It should be noted, however, that the detection limit of silver was raised due to matrix interferences and, unfortunately was above the discharge limit. Based on this, we have no way to tell if silver exceeded the discharge limit. Analyses of previous samples collected from this site indicated that silver was not present in concentrations which would exceed the discharge limit.

TABLE 3-1. RESULTS OF 96-HR MENIDIA BERYLLINA BIOASSAY ON RAINWATER DISCHARGE FROM THE CARGILL SALT COMPANY REDWOOD CITY FACILITY CRYSTALIZERS (COLLECTED 22-23 FEBRUARY, 1996)

Concentration	% Su		
(% Effluent)	Replicate A	Replicate B	AVERAGE
100	60	80	70
Control	100	80	90

TABLE 3-2. RESULTS OF CHEMICAL ANALYSES PERFORMED ON RAINWATER DISCHARGE FROM THE CARGILL SALT COMPANY REDWOOD CITY FACILITY CRYSTALIZERS (COLLECTED 22-23 FEBRUARY, 1996)

ANALYSIS	CONCENTRATION (mg/L)	DISCHARGE LIMIT (mg/L)
Salinity	31.3	
рН	8.43	(>6.5 & <8.5)
Total Dissolved Solids (EPA 160.1)	31,300	32,000
BOD (EPA 405.1)	<10	20
Arsenic (Method 6020-M)	< 0.020	0.020
Cadmium (Method 6020-M)	< 0.005	0.010
Chromium (Method 6020-M)	0.005	0.011
Copper (Method 6020-M)	0.010	0.020
Lead (Method 6020-M)	< 0.005	0.0056
Mercury (Method 245.1)	< 0.00020	0.001
Nickel (Method 6020-M)	0.011*	0.0071
Silver (Method 6020-M)	<0.005**	0.0023
Zinc (Method 6020-M)	< 0.010	0.058

^{* -} Exceeds discharge limit

^{** -} Cannot tell whether it exceeded discharge limit due to raised detection limits

4. CONCLUSIONS

The results of the tests performed on the sample that that was discharged from the crystallizers at the Redwood City facility indicate that there were no exceedances in the fish acute bioassay and only one exceedance of the metal discharge limits. These are discussed in the following sections:

4.1 FISH ACUTE BIOASSAY

The results indicate that there was 70% survival in the 100% effluent sample at the end of 96 hours.

According to Regional Board guidance in the 1991 draft Basin Plan, the median and 90 percentile values are interpreted as follows:

11 Sample Median - If five or more of the past ten samples have less than 90 percent survival, then survival of less than 90 percent on the next, eleventh, sample represents a violation of the effluent limitation.

90th Percentile - If one or more of the past ten samples is less than 70 percent survival, then survival of less than 70 percent on the next, eleventh, sample represents a violation of the discharge limitation.

According to our records, this is the fourth time that an acute toxicity test has been performed on effluent discharged from the Redwood City Crystallizer Pond. Of those four events, two have exhibited less than 90% survival and none have exhibited <70% survival. Therefore, according to the discharge permit, neither of the discharge limitations have been exceeded.

4.2 CHEMICAL ANALYSES

The chemical analyses results indicate that only nickel was present in concentrations which exceeded the limits of the discharge permit and that silver may have exceeded the discharge limit. It should be noted, however, that, while it is possible that silver exceeded the discharge limit, previous analyses of water discharged from this site indicate that the silver concentration has always been <1 ppb.

Data sheets for these bioassay tests are provided in the Appendix to this report.

APPENDIX

LABORATORY DATA SHEETS

S.R. HANSEN & ASSOCIATES

ACUTE/CHRONIC TEST DATA SHEET

START DATE 2-23-96 TIME 1600 TEST MATERIAL (AYG) II RAIN LARY RUXDILUENT NA
END DATE 2-27-96 TIME 1600 SPECIES/AGE M. Denglina Ildays, RENEWAL FREQUENCY @ 48 LV

CONC	TEMP°	I	D.O. pH COND. ALK.	pH		Sal (%)		ALK. HARD.		. HARD.		SURVIVAL		PREPARA'
	С	OLD	NEW	OLD	NEW	Sal (7)			Α	В	С	D		
ontrol	25		7.8.		8.23	31.0			10	10				
00%	4		8-2		8.43	31.3			10	10			TIME:/6	
	<u> </u>				-							<u> </u>	DATE: Z	
· · · · · · -	<u> </u>			_	-			 	<u> </u>				1D:6	
	ļ								 			ļ		
	.							<u> </u>	-		<u> </u>	-		
but	25	6.0		8.49		31-5			10	10				
1,00	1	5.9		8.55		31-3			6	8			TIME: (
													DATE:	
													ID: 6c	
]	
			_										_	
												800.800.000		
4,6	25	6.0	7.4	8.41	8.61	33.8 304			10	8	T	1000000	T	
05'/.	14	5.9	7.9	8.26	8.75				6	8	1		TIME:	
													DATE:	
] _{ID:} Ge	
	`] ۵۰.رور	
							ļ					_	_	
_											20000000			
`o~t_	25	6.5		8.58		31.7	Τ		10	8		T		
∞/. 	4	6.4		8.53		32.4			6	8			TIME:	
												1	DATE:	
													ID:6	
					ļ		1			Ì				

S.R. HANSEN & ASSOCIATES

ACUTE/CHRONIC TEST DATA SHEET

		<u> </u>	***************************************		
	//		<u> </u>	1014	
I START DATE ペンクラーフし	TIME (600	TEST MATERIAL avail Kainsoter RW	C DILUENT	NIT	
		The second secon			7 - 7
I END DATE マース・コープレ	TIME IGOD	SPECIES/AGE M. benellica 11 D.D.	RENEWAL	FREQUENCY (4)	48 L
			•		

CONC T	TEMP*).O.	pH		COND.	ALK.	HARD.	SURVIVAL			PRE	
	С	OLD	NEW	OLD	NEW				A	В	С	D	7
ont	25	6.0	,	8.59		32.3			10	8			
10%	4	5.9		8.58		33.0			6	830	13		TIM
					<u> </u>								DAT
													ID:
										<u> </u>		<u> </u>	1
					ļ				<u> </u>			<u> </u>	

	Τ				T	İ				T		T	Ī
	-				1				_	┪			TIN
									 			 	DA
									 	1			1
					1								ID:
													1
													1
	T	Ī		1	1			T	**************************************				
						:	1	_	+	-	<u> </u>		+
					<u> </u>				-	_			-{
	-	 		<u> </u>					+	+	-	_	- DA
	-	<u> </u>					-					+	
					-					_	 		1
							_		1			-	-
		ļ											_
		_							_				TI
		<u> </u>								_			D,
		1											П
		-		-				-	+	_			-
 											_		

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (415) 486-0900

ANALYTICAL REPORT

Prepared for:

S.R. Hansen & Associates 4085 Nelson Avenue Suite I Concord, CA 94520

Date: 08-MAR-96 Lab Job Number: 124544

Project ID: N/A

Location: Cargill Rainwater

Reviewed by:

Reviewed by:

This package may be reproduced only in its entirety.

Berkeley Wilmington Los Angeles

Curtis & Tompkins, Ltc

LABORATORY NUMBER: 124544

CLIENT: S.R. HANSEN & ASSOCIATES

LOCATION: CARGILL RAINWATER

DATE SAMPLED: 02/23/96
DATE RECEIVED: 02/23/96
DATE ANALYZED: 02/29/96-

: 03/05/96

DATE REPORTED: 03/07/96

ANALUGIGA DIOLOGICAL OVUCEN DENAMB

ANALYSIS: BIOLOGICAL OXYGEN DEMAND

ANALYSIS METHOD: EPA 405.1

LAB ID	SAMPLE ID	RESULT	UNITS	REPORTING LIMIT
124544-001	RWC CRYSTALLIZER	ND	mg/L	10
METHOD BLAN	K N/A	ND	mg/L	10

ND = Not detected at or above reporting limit.

 LABORATORY NUMBER: 124544

CLIENT: S.R. HANSEN & ASSOCIATES

LOCATION: CARGILL RAINWATER

Curtis & Tompkins, Li

DATE SAMPLED: 02/23/96
DATE RECEIVED: 02/23/96
DATE ANALYZED: 02/26/96

DATE REPORTED: 03/07/96

ANALYSIS: TOTAL DISSOLVED SOLIDS

ANALYSIS METHOD: EPA 160.1

LAB ID	SAMPLE ID	RESULT	UNITS	REPORTING LIMIT
124544-001	RWC CRYSTALLIZER	31,300	mg/L	100
METHOD BLAN	K N/A	ND	mg/L	10

ND = Not detected at or above reporting limit.

QA/QC SUMMARY: SAMPLE DUPLICATE OF 124516-001

RPD, %

6

124544

CHAIN OF CUSTODY RECORD

"	AME/SITE:: Ca.	TYPE OF ANALYSIS	PRESERVATIVE/ COMMENTS				
DATE	TIME	COMPOSITE/ GRAB	SITE LOCATION	#/SIZE/TYPE CONT/	OF SAMPLE AINERS		
2.23.96		G	RWC			Total dissolved BOD (5 day	
							No preservative
RELINQUISHED-BY: (SIGNATURE) DATE/TIME RECEIVED BY: (SIGNATURE) 2123/96 2:40pm Dana a Morro							
RELINQUISHED BY: (SIGNATURE) DATE/TIME				E	RECEIVED	BY: (SIGNATURE	

4085 Nelson Avenue, Suite I • Concord, CA 94520 • (510) 687-5400 • Fax (510) 687-2296

Quanterra Incorporated 880 Riverside Parkway West Sacramento, California 95605

916 373-5600 Telephone 916 372-1059 Fax

March 20, 1996

QUANTERRA PROJECT NUMBER: 086633 PO/CONTRACT: NA

Gary Wortham S.R. Hansen & Associates 4085 Nelson Avenue, Suite I Concord, CA 94520

Dear Mr. Wortham:

This report contains the analytical results for the one aqueous sample which was received under chain of custody by Quanterra Environmental Services on 06 March 1996. This sample set is associated with your Cargill Salt project.

The case narrative is an integral part of this report.

If you have any questions, please call me at (916)374-4357.

Sincerely, Vuch Hew

David J. Herbert Project Manager

DJH/jas

Enclosures

TABLE OF CONTENTS

QUANTERRA PROJECT NUMBER 086633

Case Narrative

Quanterra's Quality Assurance Program

Sample Description Information

Chain of Custody Documentation

Selected Metals - Various Methods

Includes Sample: 1

Sample Data Sheets Method Blank Report Laboratory QC Reports

CASE NARRATIVE QUANTERRA PROJECT NUMBER 086633

Selected Metals - Various Methods

All reporting limits were raised due to matrix interference.

No other anomalies were associated with this report.

QUANTERRA'S QUALITY ASSURANCE PROGRAM

Quanterra has implemented an extensive Quality Assurance (QA) program to ensure the production of scientifically sound, legally defensible data of known documentable quality. A key element of this program is Quanterra's Laboratory Control Sample (LCS) system. Controlling lab operations with LCS (as opposed to matrix spike/matrix spike duplicate samples), allows the lab to differentiate between bias as a result of procedural errors versus bias due to matrix effects. The analyst can then identify and implement the appropriate corrective actions at the bench level, without waiting for extensive senior level review or costly and time-consuming sample re-analyses. The LCS program also provides our client with information to assess batch, and overall laboratory performance.

Laboratory Control Samples - (LCS)

Laboratory Control Samples (LCS) are well-characterized, laboratory generated samples used to monitor the laboratory's day-to-day performance of routine analytical methods. The results of the LCS are compared to well-defined laboratory acceptance criteria to determine whether the laboratory system is "in control". Three types of LCS are routinely analyzed: Duplicate Control Samples (DCS), Single Control Samples (SCS), and method blanks. Each of these LCS are described below.

Duplicate Control Samples. A DCS is a well-characterized matrix (blank water, sand, sodium sulfate or celite) which is spiked with certain target parameters and analyzed at approximately 10% of the sample load in order to establish method-specific control limits.

Single Control Samples. An SCS consists of a control matrix that is spiked with surrogate compounds appropriate to the method being used. In cases where no surrogate is available, (e.g. metals or conventional analyses) a single control sample identical to the DCS serves as the control sample. An SCS is prepared for each sample lot. Accuracy is calculated identically to the DCS.

Method Blank Results. A method blank is a laboratory-generated sample which assesses the degree to which laboratory operations and procedures cause false-positive analytical results for your samples.

SAMPLE DESCRIPTION INFORMATION for S.R. Hansen & Associates

Lab ID

Client ID

Matrix

Sampled Date Time Received Date

086633-0001-SA Cargill Salt

AQUEOUS

23 FEB 96

06 MAR 96

S.R. HANSEN & ASSOCIATES

CHAIN OF CUSTODY RECORD

II ·	ME/SITE:: (\a. (SIGNATURE)	rgiff Salt	$\overline{\mathcal{O}}$	Ruc Crystall	iser	77/05 05				
	. (Xan 51	04			TYPE OF ANALYSIS	PRESERVATIVE/ COMMENTS			
DATE	TIME	COMPOSITE/ GRAB	SITE LOCATION	#/SIZE/TYPE OF SAMPLE CONTAINERS					2	
# 2-23-96		G	Redwood City	1x2000 me 1	3904	Metals	4003			
			1700000				Analyze For:			
							As, Cd, Cr, Ca, Pb, Ha, Ni, Ag, ~22			
							* use lowest defeat limits possible.	Hon		
A										
RELINQUISHE	ED BY: (SIGNAT	TURE)	DATE/TIM 3-1-96/090		RECEIVED	BY: (SIGNATURE	Ē)			
RELINQUISHE	D BY: (SIGNAT	TURE)	DATE/TIM	E / // 1045 (RECEIVED	by: (signature	i)			

Selected Metals - Various Methods

METALS

(Water - Total)

Client Name: S.R. Hansen & Associates Client ID: Cargill Salt Lab ID: 086633-0001-SA

AQUEOUS Matrix: Sampled: 23 FEB 96 Received: 06 MAR 96 Authorized: Prepared: See Below 06 MAR 96 Analyzed: See Below

Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Silver Zinc	ND ND O.010 ND ND O.011 ND ND	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.020 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.010	6020-M 6020-M 6020-M 6020-M 6020-M 245.1 6020-M 6020-M 6020-M	13 MAR 96 13 MAR 96 13 MAR 96 13 MAR 96 11 MAR 96 13 MAR 96	18 MAR 96 18 MAR 96 18 MAR 96 12 MAR 96 18 MAR 96

Note!: All reporting limits raised due to interference created

by high concentrations of dissolved solids.

Note 1: Analysis date = 03/19/96

ND = Not detected NA = Not applicable

Reported By: John Barnett Approved By: Barry Votaw

The cover letter is an integral part of this report. Rev 230787

QC LOT ASSIGNMENT REPORT - MS QC Metals Analysis and Preparation

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	MS QC Run Numbe (SA,MS,SD,DU)
086633-0001-SA	AQUEOUS	6020-M-AT	13 MAR 96-MX	13 MAR 96-M
086633-0001-SA	AQUEOUS	HG-CVAA-A	11 MAR 96-AX	11 MAR 96-A

METHOD BLANK REPORT

Metals Analysis and Preparation

Project: 086633

ICPMS AALIST (As, Pb, Se, Tl, Sb, Cd, Cr, Cu, Ni, Ag,

Test: 6020-AALIST-AT Žn)

Method: 6020-M Matrix: AQUEOUS

QC Lot: 13 MAR 96-MX QC Run: 13 MAR 96-M

Analyte	Result	Units	Reporting Limit
Arsenic Cadmium Chromium Copper Lead Nickel Silver Zinc	ND ND ND ND ND ND ND	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0040 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0020

Test: HG-CVAA-AT Mercury, Cold Vapor AA (Total)

Method: 245.1 Matrix: AQUEOUS

QC Lot: 11 MAR 96-AX QC Run: 11 MAR 96-A

Analyte Result Units Reporting Mercury ND mg/L 0.00020

LABORATORY CONTROL SAMPLE REPORT Metals Analysis and Preparation Project: 086633

Category: 6020-M-AT Metals by ICPMS Test: 6020-AALIST-AT

AQUEQUS Matrix:

OC Lot: 13 MAR 96-MX Concentration Units: mg/L

QC Run: 13 MAR 96-M

Analyte	Concentration Spiked Measured	Accuracy(%) LCS Limits
Antimony Arsenic Beryllium Cadmium Chromium Cobalt Copper Iron Lead Molybdenum Nickel Selenium Silver Thallium Tin Zinc	0.200	107 80-120 97 80-120 86 80-120 95 80-120 95 80-120 87 80-120 98 80-120 96 80-120 96 80-120 93 80-120 99 80-120 99 80-120 94 80-120 94 80-120 96 80-120

Category: HG-CVAA-A Mercury by CVAA

Test: HG-CVAA-AT Matrix:

AQUEOUS 11 MAR 96-AX QC Lot:

Concentration Units: mg/L

QC Run: 11 MAR 96-A

Analyte	Concentration Spiked Measured		
Mercury	0.00100 0.00106	106 80-119	

MATRIX SPIKE/MATRIX SPIKE DUPLICATE MSQC REPORT

Metals Analysis and Preparation

Project: 086633

Category: 6020-M-AT Metals by ICPMS

Test : 6020-AALIST-AT

Method: 6020-M

Matrix : AQUEOUS

Sample : 086633-0001 Units : mg/L

Units Qualifier: Wet Weight

QC Lot : 13 MAR 96-MX MS Run: 13 MAR 96-M

		- Concentration	on					
	Sample	MS	MSD	Spiked	%Recovery	Control	L	F
Analyte	Result	Result	Result	MS/MSD	MS MSD	Limits	%RPD	Li
Arsenic	ND	0.228	0.212	0.200	114 106	75-125	7.2	2
Cadmium	ND	0.224	0.208	0.200	112 104	75-125	7.4	2
Chromium	ND	0.206	0.193	0.200	103 96	75-125	6.5	2
Copper	0.0101	0.221	0.222	0.200	105 106	75-125	0.47	2
Lead	ND	0.197	0.183	0.200	98 92	75-125	7.4	2
Nickel	0.0114	0.213	0.203	0.200	101 96	75-125	5.1	2
Silver	ND	0.203	0.189	0.200	102 94	75-125	7.1	2
Zinc	ND	0.216	0.219	0.200	108 110	75-125	1.4	2

Category: HG-CVAA-A Mercury by CVAA

Test : HG-CVAA-AT

Method: 245.1

Matrix : AQUEOUS Sample : 086642-0003

Units : mg/L

Units Qualifier: Wet Weight

MS Run: 11 MAR 96-A QC Lot : 11 MAR 96-AX

Analyte	Sample Result	oncentration MS Result		Spiked MS/MSD	%Recovery MS MSD	Control Limits %RPD	F
Mercury	0.000108 J	0.00114	0.00115	1			:

Calculations are performed before rounding to avoid round-off errors in calculated results.

J = Result is detected below the reporting limit or is an estimated concentration. ND = Not Detected

		,	